Uﬂ;'l’ } j_a_\/d Sevvile L"S € Tcp |

T _ ()

1 0 1
)

ﬁ 6\ ((ommon galfway ' f/[‘E]Q) L

S US{(‘ L() P(OVIA? Clynarfl)((Oﬂt,l‘ L |

P Wy [
o [he usel Y o« |

) Chl le s d };o

0 H?CJ:’ | CI}J& M
SP{{?/(/;M): V/OCGSS CJO-J. /OLCCC’U
e

|k /Ja/J

__ II. '

Education4Fun.com

-2

(@% | D“’QC] van)ClQ(A O F (Ol

s
{*2.

" FO!"' Ff?()) ("(Jvl G o (el /f(/t/f'ré"
an (')/(s(rn [(//aj-f J } 5

= F oo of ﬁrr/L/({jx nrleas e

|
\’(no 0/ {')/O ((f;’ }'\N)O’ Oj | t'__} b:\of
6; SOy H;ﬁd {7()*!"{3 /(g()OﬂC"
il lade Lree
) (&I gC(l()l" aé V}/lll-—Z'ff"
o e Jaﬂ‘?dw ks
C,C++ hne FJU}(O/’“
B
(
—'—)_’SC’/VQL’L > })J_l |

= To /esoJ\/(,«'Li P/o

(|
b o cleaded by COAL
VOJ_ {: (Cagod\/((l w I\U\ {q 2/'/‘() (I:'CL'%

0 F .QE/MJ! 1/ .
= Cetvlils af
W'/l‘_Hfﬂ l}ﬂg #\ra \/a/. |

duction4Fun-.(:‘,or-ﬁ.

= s we koow java PJdl 'ﬂ
Ia! —(6(w | ;'Ode (&(’f)dx/\}— L ton (i \h\
| |

- (Sf/ff J) 5m

Education4Fun.com

. I QHL/J[Z—J gafL
I/C (/L'fL’ ¥ hﬁﬂc‘de(l
b‘/ dqufquu.
Java Z:-B/(ac!

:.. =7 Caﬂ haﬂJJl

AN

Kie E ér’a |

| LJ‘US: éffc‘nfc't/(

5 Lt ta kel -

o T

s pL)OJ' KO/m
n’ndx@f@dz/d~

EducationdFun.com

oFS(mJ Cos]

C_.@’/(Gmmon i

&)olfwa,u Inz-r/f G)

— (0)’ S no},—) %
po/laJ)uL s
| Cll €a(L L

(‘09‘/"/& IS I’)Gncue,} do
bl/ }‘40‘/9 V\/(fg}\l —7
Ploc“if/ C
- (O] canno > Q
hancUJ C,Ookﬁ:, |
£ back wor .
2 mort C‘;(ﬂmn\/c .
5 sdower
3 Yunr 60
(U f)fo CesSar

gé n'C WCI’-SIZI @ clunamlf b‘/('bsl‘}.—r il
L

—~) Pﬂ'b‘”d‘l Cdnlﬂ; By v Canlml
[sSanmv e V(Y Q(Mfalfc(&wd"u[u/

e the pog! ¢ (hangxa 1
500&’4 ﬂ"Q‘/J“/“{‘% |

— (Jses

o AM'JOPM? Jaﬂquaj’” il

V‘/‘bs' ‘ @Sewdzl-/

|+ THMLE = s mo

— Sam

Ei itk HTH

ol el /CQN/U lel‘(fmck ﬁq‘/dl"
3 fJba]) rblv R\ (or)}rnl* m[OW

Lk " a(jnfanz@gx — renk Syz’, }jm
-y gc/\ﬁ!/ ((d\“l U !,ag,g

(wﬁ’} O mo" aClJ(;g./c/
g% ¢ . | (V D gaaed
(LUN ?Un %Ilﬂba | rCS? q ?
O d” e Q%

Education4Fun.com

"') \AAdanLg@mmﬂ of ngd,g

| p——) Bcr Pc’/ron/m&n(/

II S = ol lab ik . |
| -1 Robus l- | I
— gecure. o
‘@ @J((
— Lbf (y(J(ol . _yava Selv q) ‘

’@"") —n:‘{mL/c JJ((‘/(JeT A
-S(’NJ!L - _-'MGOOQ(‘I by Ehe servids s

= IC(-X)LaJ“N/ which _Uses [he :|an/a>(, -
; sevile. Setulr b Tnlevface Eoo - \C@
5' W Sc/wd,i objec b

£ manage 3

! —)%éagw of Ee/\/ub ijcya/[«
-"f /) Cedvids € _((Jcm S doadd |
L i) Celvde wilance !‘S.(éah
e thl MHJ|(M@hJJ:‘
by _w] S(’/wa Wlha) ’4“:’k‘
/ 1/} De fL{a‘/ mf“@c{ (o [«

cation4F_Ur_i.cofn ”

) doad cerugl cdac,
2] Cleade’ carmdedd, . |
intbanc \

) caU Ll\a (mL me Lho |) |

Educ'af;i'oh4Fun.cc->m

T) JaJ,,hqq | Scf‘u/J;L IcJass -

9 The 'ﬁ‘nl: s[—ag}r ol
e cembl dfoepe nvoke
Joacfmo & u\mlfabz,og Lhe cervide L
by U“ Cervike Conzwn{/ K

g/a,s@_/—‘) Whe H\, (\/IZ' ﬂ'?'/a

For bhe cetude b ! ot o d
by Lh- ML (an@oum/ gg/ML

| CNLLL(M[CUN/ 1S TVM)
(s doadch (set : L

L lmlan&
) St el
ai H’ mlLﬁ”C’ o a SNL/UL
ot _Cp./u‘J«L- ((Jan“.

: [;c/ LJOacjn%a the
—) ‘[T)e &c/x/ulel

A
o ‘f i(Cd’a,)r ()OLL,J onC(I'h é
7 SNWJr L ife coede.

Education4Fun.com

i 1‘006

Educatid.h4'Funfcom |

Eélucation4Fun.com

r)
Java virtual machine Serviet
/
o} 4
Servlet : 1T
k » Selvice
Container 0
destroy() 8
Requests to the serviet container i o

Wely Sewer,

Education4Fun.com

R

|
SERVLETS - FORM DATA @ ‘-
https://\\-‘ww.lulm'i;llspninl.mnl/survl(3I's/.~su|'v|(:ls-l't)|*|11—cl;|r::.hlm \ !'.

‘ . Copyright @©
tutorialspoint.com P

Advertisements .

_You must have come across many situations when you need to pass some %
information from your browser to web server and ultimately to your |

_backend. program. The browser uses two methods to pass this "
information to web server. These methods are GET Method and POST
Method.

GET Method

The GET method sends the encoded user info

gﬁge request. The page and the encoded info

rmation appended to the \%
€ ? questionmark Symbol as follows —

rmation are separated by],
¥ ot LG |
http://www.test.com/hello?keyl = 65_1_uel&key2 = value2 '\ -

The GET method is the default method to pass information from browser .
to web server and it produces a long string that appears in your browser's i
Location:box. Never use the GET method if you have password or other ;
sensitive information to pass to the server. The GET method has size 4
limitation: only 1024 characters can be used in a request string.

, : o
This information is passed using QUERY_STRING header and will be &
accessible through QUERY_STRING environment variable and

Servlet handles this type of requests using doGet method. "-
POST Method

A generally more reliable method of passing information toa !)ackend B
program is the POST method. This packages the information in exactly

the same way as GET method, but instead of sending it as a text string
after a

? ionmark in the URL it sends it as a separate message. This message
cor?llggﬂgmtaﬂe backend program in the form of the standard input Whlgh

you can parse and use for your processing. Servlet handles this type of
requests using doPost method.

e T

ducion.m |

Reading Form Data using Servlet
Servlets handles form data parsing automatically using the following,
methods depending on the situation - getParameter = You call e
request.getParameter method to get the value of a form parameter.
getParameterValues = Call this method if the parameter appears
more than onee and returns multiple values, for example checkbox.
getParameterNames - Call this method if you want a complete list
of all parameters in the current request.
GET Method Example using URL
Here is a simple URL which will pass two values to HelloForm program
using GET method.
http://localhost:8080/HelloForm?first_name = ZARA&last name = ALI
Given below is the HelloForm.java servlet program to handle input given

by web browser. We are going to use getParameter method which makes
it very easy to access passed information —

// Import
required java
Libraries import
java.io.*;
import
javax.servlet.*;

import

javax.servlet.htt

p.*;

i Extend HttpServlet class

public class HelloForm extends HttpServlet {
public void doGet (HttpServletRequest request,

HttpServletResponse response) .
throws ServletException, IOException {

//Set response content

type

Education4Fun.com

response.setContentTyp
e("text/html");

String title = "Using GET Method to Read Form Data";
String docType =

"<!doctype html public \"-//w3c//dtd html 4.0 " +

|
— f
PrintWriter out = response.getWriter(); P

"transitional//en\">\n"; |

out.println(docType + i‘
"<html>\n" + 1
“<head><title>" + title + "</title></head>\n" + B
"<body bgcolor = \"#fofefe\">\n" + B

"<hl align = \"center\">" + title + "</h1>\n" + }
"\n" +

" First Name: "

+ request.getParameter("first_name") + "\n" +
" Last Name: "

+ request.getParameter("last_name") + "\n" +

"\n" + i
"</body>" + B
"</html>" b

) L

} o

} [h3

|
Assuming your environment is set up properly, compile HelloForm.java as | i
follows —

$ javac HelloForm.java

If everything goes fine, above compilation would produce [
HelloForm.class file. Next you would have to copy this class file in
<Tomcat-installationdirectory> /webapps/ROOT/WEB-INF/classes and
create following entries in web.xml file located in <Tomcat-installation-
directory>/webapps/ROOT/WEB-INF/

<servlet>
<servlet-name>HelloForm</servlet-name>
<servlet-class>HelloForm</servlet-class>
</servlet>

¢<servlet-mapping>
¢servlet-name>HelloForm</servlet-name>

e A R T T R R e T R
. ST e Sl S 3,5?_,

et Y et
ik 5

Educatibn4Fu.cm

<url-pattern>/HelloForm</url-patterns
</servlet-mapping>

Now type
lhrtp://h)ca!hosr:8080/ HelloForm?firsi_name=ZARA&last_name=ALI

- - -l l‘ a Ll 3 . P .J
In your browser's Location:box and make sure you already started tomcat
server, before firing above command in the browser. This would generate
following result —

‘ USING GET METHOD TO READ FORM DATA é;)

| First Name: ZARA @

B
Last Name: AL~]
4
GET Method Example Using Form o
| Here is a simple example which passes two values using HTML FORM ' “
| i\ and submit button. We are going to use same Servlet HelloForm to
B handle this input. .
| p | \XC\\D Folm .dcwa\
<html>"" /
! <body> v
! <form action = "HelloForm" method = "GET">
First Name: <input type = "text"
name = "first_name">

Last Name: <input type = "text"
name = "last_name" /> <input l’
type = "submit" value = "Submit" n
/> =
</form> |
</body> v/ |
</html> ./ i .\
Keep this HTMLin a file Hello.htm and p_ut it in <Tomcat- |
installationdirectory>/webapps/ROOT directory.

Education4Fun.com

When you would access http://localhost:8080/Hello.htm, here is the actual
output of the above form. e

Try to enter First Name and Last Name and then click submit button to |
see the result on your local machine where tomeat is running. Based on |
the input provided, it will generale similar result as mentioned in the 1
above example.

POST Method Example Using Form

|

|

|

n

. 1
First Name: Last Name: 'i.(]1
i

Let us do little modification in the above servlet, so that it can handle
GET as well as POST methods. Below is HelloForm.java servlet
program to handle input given by web browser using GET or POST
methods.

// Import ey

required jgva

Libraries/gmport g
java.io.*;

import £
javax.servlet.*;//
import
javax.servlet.htt

p-*5” ﬂ

// Extend HttpServlet class =

public class HelloForm extends HttpServlet {

// Method to handle GET method request.
public void doGet (HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

//Set response content |
type
response.setContentTyéfg
e("text/html");

i ——

printWriter out = response.getWritgigz;

IS o U

Education4Fun.co

String title = "Using GET Method to Read Form Data";

String docType =
"<ldoctype html public \"-//w3c//dtd html 4.0 " +

"transitional//en\">\n";

out.println(docType +

"<html>\n" +
"<head><title>“,+—&;%i;>+_“</tit1e></head>\n“ +
"<body bgcolor = \"#fofefo\">\n" +

o

"¢<hl align = \"center\">" + title + "</h1>\n" +
"\n" +
" ¢<1i>First Name:
+ request.getParameter("first_name") + "\n" +
" ¢li>Last Name: "
+ request.getParameter("last_name") + "\n" +

"\n" +

"</body>"
"</html>"
)s
} s
// Method to handle POST method request. : f&

public void doPost (HttpServletRequest request, \

HttpServletResponse response)
throws ServletException, I0Exception {

doGet(request, response);

}
}
Now compile and deploy the above Servlet and test it using Hello.htm with
the POST method as follows —
<html> i
<body> e
<form action = "HelloForm" method = "POST"> QJ
i " o= 2A0)
First Name: <input type = "text ~ (igf) .
name = "first_name">
 -V i
Last Name: <input type = "text” ///f,,,f#"“ ?
name = "last_name" /> <input o . CLL 5
type = ngubmit" value = "Submit" ' 0
/> **0 o) 2 "6

¢/form> lf'\ \ B
</body> \ \\ﬂ///ggfyf///

Educaﬁo

MEN

</html>

Here is the actual output of the above form, Try to enter First and Last
Name and then click submil button to see the result on your loeal
machine where tomeat is running,

First Name: | (- Last Name: {

e

Based on the input provided, it would generate similar result as mentioned
in the above examples.

Passing Checkbox Data to Servlet Program

Checkboxes are used when more than one option
is required to be selected. Here is example HTML
code, CheckBox.htm, for a form with two
checkboxes

<html>

<body>
<form action = "CheckBox" method = "POST" target =

" blank™>
<input type = "checkbox" name = "maths" ol
checked = "checked" /> Maths <input type
= "checkbox" name = "physics" /> Physics |
<input type = "checkbox” name = (/’Fi) ;
"chemistry" checked
= "checked" />
Chemistry
<input type = "submit" value =
"Select Subject" /> </form>
</body>
</html>

The result of this code is the following form o H

Maths Physics Chemistry

Education4Fun.com

Given below is the CheckBox.java servlet program to handle input given by
web browser for checkbox button.

// Import

required java

Libraries import

java.io.¥;

import

javax.servlet.*;

import

javax.servlet.htt

p-%;

// Extend HttpServlet class

public class CheckBox extends HttpServlet {
// Method to handle GET method request.
public void doGet(HttpServletRequest request, >3

HttpServletResponse response)
throws ServletException, IOException {

// Set response content é
response.setContentTyp :
e("text/html");
PrintWriter out = response.getWriter();
String title = "Reading Checkbox Data" ;.
String docType =)
"<Idoctype html public \"-//w3c//dtd html 4.8 " +
"transitional//en\">\n";
out.println(docType +
"<html>\n" + _)
"chead><title>" + title + "</title></head>\n" +
"<body bgcolor = \"#fofofo\">\n" +)
"<hl align = \"center\">" + title + "</h1>\n" + !

"2ul>\n" +)
" ¢1i>Maths Flag : :

+ request.getParameter("maths“) + "\n" +
" ¢1i>Physics Flag: : "

nssira s Jm T i R SRS g

Educatio'h-4‘FUH.cdrh |

+ request.getParameter("physics") + "\n" +
" <1li>Chemistry Flag: : "
+ request.getParameter("chemistry”) + "\n" +
"\n" +
"</body>" |
"</html>"

)s

}

// Method to handle POST method request.

public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

doGet(request, response);
}
}

For the above example, it would display following result —

READING CHECKBOX DATA

Maths Flag : : on 8

Physics Flag: : null &h

Chemistry Flag: : on

Reading All Form Parameters

Following is the generic example which uses getParameterNames i
method of HttpServletRequest to read all the available form parameters. i

This method returns an Enumeration that contains the parameter
names in an unspecified order

Education4Fun.com

Once we have an Enumeration, we can loop down the Enumeration in
standard way by, using hasMoreElemen ts method to determine when to
Stop and using nextElement method to get each parameter name.

// Import
required java
Libraries import
java.io.*;

import
javax.servlet, *;
import
javax.servlet.htt
p.*; import
Jjava.util.*;

747] Extend HttpServliet class
public class ReadParams extends i
HttpServlet { 7!

// Method to handle GET method request.

-

-

e ik

s,
e

'-'-g?étn =

public void doGet (HttpServletRequest request, i3
HttpServletResponse response)
throws ServletException, IOException {

//Set response content

type
response.setContentTyp
e("text/html");

PrintWriter out = response.getWriter();
String title = "Reading All Form Parameters";

String docType =
"<ldoctype html public \"-//w3c//dtd html 4.0 " +

“transitional//en\">\n";

out.println(docType +

"<html>\n" +
"<head><title>" + title + "</title></head>\n" +

“<body bgcolor = \"#fofefe\">\n" +

ducation4Fun.co

"<hl align = \"center\">" + title + "</h1>\n" +
"<table width = \"100%\" border = !
\"1\" align = \"center\">\n" + "<tr i
bgcolor = \"#949494\">\n" +
"<th>Param Name</th>" l
"<th>Param Value(s)</th>\n"+ '
"</tr>\n"

) k|
Enumeration paramNames = request.getParameterNames(); | !

while(paramNames.hasMoreElements()) { i
String paramName = (String)paramNames.nextElement(); |
out.print("<tr><td>" + paramName + "</td>\n<td>");
String[] paramValues =
request.getParameterValues (paramName);

// Read single valued data
if (paramValues.length == 1) {
String paramValue = paramValues[0];
if (paramValue.length() == 0)
out.println("<i>No Value</i>"); 5
else '
out.println(paramValue);
} else {
// Read multiple
valued data
out.println("

O
for(int i = @; i < paramValues.length; i++) {
out.println("<1i>" + paramValues[i]);

}
out.println("");

}}
out.println("</tr>\n</table>\n</body></html>");

}

// Method to handle POST method request.
public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

doGet(request, response);

Education4Fun.com

}
}

<html>
<body>
<torm action = "ReadParams" method = "posT” target =
" blank">
| <input type = “"checkbox" name = "maths”
! checked = "checked" /> Maths <input type
| = "checkbox™ name = "physics" /> Physics
<input type = "checkbox" name = "chemistry"
checked = "checked" /> Chem <input type =
"submit" value = "Select Subject" />
</ form>
</body>
</html>

|
|
|
! Now, try the above servlet with the following form -
|
|
|

Now calling servlet using the above form would generate the following result

READING ALL FORM PARAMETERS

e

F

Param Name Param Value(s)
; maths on
|
chemistry on oA

You can try the above servlet to read any other form's data having other
objects like text box, radio button ordrop down box etc.

ucationFun.com

HTTP - REQUESTS @

An HTTP client sends an HTTP request to a server in the form of a
request message which includes following format:

-

"A Request-line i
|

Zero or more header (General|Request|Entity) fields followed by
CRLF | B

An empty line (i.e., a line with nothing preceding the CRLF)
indicating the end of the header fields

Optionally a message-body

ZEIETND S

The following sections explain each of the entities used in an HTTP .
request message.

Request-Line

The Request-Line begins with a method token, followed by the
Request-URI and the protocol version, and ending with CRLF. The
elements are separated by space SP characters.

Request-Line = Method SP Request-URI SP HTTP-Version CRLF

T I

Let's discuss each of the parts mentioned in the Request-Line. |

Request Method \ |

The request method indicates the method to be performed on the

resource identified by the given Request-URI. The method is case- .
sensitive and should always be mentioned in uppercase. The following . ;
table lists all the supported methods in HTTP/1.1. i !

S.N. Method and Description

Edatin4Fu.co

/l GET

The GET method is used to retrieve information from the given
server using a given URI. Requests using GET should only
retrieve data and should have no other effect on the data.

2 HEAD

Same as GET, but it transfers the status line and the header
section only.

\/ 3 POST ol
—

A POST request is used to send data to the server, for example,

customer information, file upload, etc. using HTML forms.
—

/4 PUT
Replaces all the current representations of the target

resource with the uploaded content.

5 . DELETE
Removes all the current representations of the target resource
given by URL. ,0

6 CONNECT

Establishes a tunnel to the server identified by a given URI.

7 OPTIONS
Describe the communication options for the target resource.

8 TRACE
Performs a message loop back test along with the path to the
target resource.

Request-URI

et

Education4Fun.com

The Request-URl is a Uniform Resource Identifier and identifies the
resource upon which to apply the request. Following are the most
commonly used forms to specify an URI:

Request-URI = """ | absoluteUR] | abs_path | authority

S.N. Method and Description

1 The~ asterisk * is used when an HTTP request does not apply to a
particular resource, but to the server itself, and is only allowed
when the method used does not necessarily apply to a resource.
For example:

OPTIONS * HTTP/1.1 s = a

2 The absoluteURI is used when an HTTP request is being made
to a proxy. The proxy is requested to forward the request or
service from a valid cache, and return the response. For example:

GET hitp://www.w3.org/pubWWW/fheProject htmDHTTP/{ 1)

3 The most common form of Request-URI is that used to identify a
resource on an origin server or gateway. For example, a client
wishing to retrieve a resource directly from the origin server would
create a TCP connection to port 80 of the host "www.w3.org" and

send the following lines:

GET /pub/WWW/TheProject.html

HTTP/1.1 Host: www.w3.0rg

Note that the absolute path cannot be empty; if none is present
in the original URI, it MUST be given as "/" theserverroot.

Request Header Fields
We will study General-header and Entity-header in a separate chapter
when we will learn HTTP |

Education4Fun.com

header fields. For now, let's check what Request header fields are.

The request-header fields allow the client to pass additional information
about the request, and about the client itself, to the server, These fields
act as request modifiers.Here is a list of some important Request-
header fields that can be used based on the requirement:

1 - Accept-Charset

* Accept-Encoding v~

: Accept—Language/

. Authorization

* Expect

" From

: Host <

- If-Match

* If-Modified-Since
[f~-None-Match

' . If-Range

* [f-Unmodified-Since

Max-Forwards
Proxy-Authorization
Range

L 1 }

Referer
TE
User-Agent “

You can introduce your custom fields in case you are going to write
your own custom Client and Web Server. | B
|

' Examples of Request Message (

B = 1t e =

i

Education4Fun.com

Now let's put it all together to form an HTTP request to fetch hello.htm
page from the web server running on tutorialspoint.com

e
GET /hello.htm HTTP/1.1%" @
User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
Host: www.tutorialspoint.com
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Connection: Keep-Alive

Here we are not sending any request data to the server because we are
fetching a plain HTML page from the server. Connection is a general -
header, and the rest of the headers are request headers. The following
example shows how to send form data to the server using request

message body:

POST /cgi-bin/process.cgi HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; MSIES.01; Windows NT)

Host: www.tutorialspoint.com
Content-Type: application/x-www-form-urlencoded

Content-Length: length
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Connection: Keep-Alive

licenselD=string&content=string&/paramsXML=string

Here the given URL /cgi-used to process the passed data and
bin/process.cgi will be responseaccordingly, a tells the server that the
will be returned. Here content-passed data is a simple web of the
type form data and length will bedata put in the message body. The
the actual length example shows following your web server:

how you can pass plain XML to

POST /cgi-bin/process.cgi HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIES.01; Windows NT)

Host: www.tutorialspoint.com
Content-Type: text/xml; charset=utf-8
Content-Length: length
Accept-Language: en-us

Educatioﬁ4.m

Accept-Encoding: gzip, deflate
Connection: Keep-Alive

<?xml version="1.0" encoding="utf-8"?>
<string xmins="http://clearforest.com/">string</string>

Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Education4Fun.com

HTTP - RESPONSES @

After receiving and interpreting a request message, a server "_
r 3
responds with an HTTP response message: | |

|

|

| |
A Status-line

Zero or more header (General|Response|Entity) fields followed by 8
* CRLF

An empty line (i.e., a line with nothing preceding the CRLF)
indicating the end of the header fields

Optionally a message-body 3

The following sections explain each of the entities used in an HTTP
response message.

Message Status-Line

A Status-Line consists of the protocol version followed by a numeric
status code and its associated textual phrase. The elements are
separated by space SP characters.

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF
HTTP Version

A server supporting HTTP version 1.1 will return the following version
information:

HTTP-Version = HTTP/1.1
Status Code

Education4Fun".EOm

The Status-Code element is a 3-digit integer where first digit of the
Status-Code defines the class of response and the last two digits do not
have any categorization role. There are 5 values for the first digit:

S.N. Code and Description |

1 1xx: Informational QCG(Uhl\' (0T T P(D(}O(u)

It means the request was received and the process is continuing.

2 2xx: Success

It means the action was successfully received, understood, and
accepted.

3" 3xx: Redirection

It means further action must be taken in order to complete the
request.

4+ 4xx: Client Error -
It means the request contains incorrect syntax or cannot be fulfilled. S

-
.3
Y
e e

5. 5xx: Server Error
It means the server failed to fulfill an apparently valid request.

HTTP status codes are extensible and HTTP applications are not
d the meaning of all registered status codes. A list

required to understan
of all the status codes has been given ina sepafate'chapter for your

reference.

Response Header Fields
We will study General-header and Entity-header in a separate chapter

when we will learn HTTP header fields. For now, let's check what

Response header fields are.
_header fields allow the server to pass additional

The response
nnot be placed in the Status-

information about the response which ca

it e s et il Y b A e et

Education4Fun.com

Line. These header fields give information about the server and about i)
further access to the resource identified by the Request-URI. !

Accept-Ranges
Age

ETag

Location
Proxy-Authenticate
Retry-After

Server

Vary

WWW-Authenticate
You can introduce your custom fields in case you are going to write your

own custom Web Client and Server.

Examples of Response Message
Now let's put it all together to form an HTTP response for a request to

fetch the hello.htm page from the web server running on

tutorialspoint.com

HTTP/1.1 200 OK £ >

Date: Mon, 27 Jul 2009 12:28:53 GMT
Server: Apache/2.2.14 (Win32)

Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT

Content-Length: 88 v~ |

Content-Type: text/html v~
Connection: Closed v~ _

<html>

<body>
<h1>Hello, World!</h1>

</body>
</html>

The following example shows an HTTP response message displaying
error condition when the web server could not find the requested page:

HTTP/1.1 404 Not Found

Edcaion4Fun.com

Line. These header fields give information about the server and about
further access to the resource identified by the Request-URI. &

Accept-Ranges
Age

ETag

Location

Proxy-Authenticate 1
Retry-After '
Server

Vary
WWW-Authenticate

You can introduce your custom fields in case you are going to write your
own custom Web Client and Server.

Examples of Response Message |
Now let's put it all together to form an HTTP response for a request to 1
fetch the hello.htm page from the web server running on |

tutorialspoint.com

HTTP/.1 200 OK 2= P

Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache/2.2.14 (Win32)

Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT

Content-Length: 88 v* \

Content-Type: text/html v~ |
Connection: Closed « . \

<html>

<body>
<h1>Hello, World!</h1>

</body>
</html>

The following example shows an HTTP response message displaying
error condition when the web server could not find the requested page:

HTTP/1.1 404 Not Found

Educ'at_ion'un.com

L '.

el K NS A

Educa

Date: Sun, 18 Oct 2012 10:36:20 GMT
Server: Apache/2.2.14 (Win32)
Content-Length: 230 _-

Connection: Closed
Content-Type: text/html; charset=iso-8859-1

<IDOCTYPE HTML PUBLIC "-/IETF//DTD HTML 2.0/EN">

<html>

<head>
<title>404 Not Found</title>

</head>

<body>
<h1>Not Found</h1>
<p>The requested URL /t.html was not found on

this server.</p> </body>

</html>
Following is an example of HTTP response message showing error
condition when the web server encountered a wrong HTTP version in

the given HTTP request:

HTTP/1.1 400 Bad Request
Date: Sun, 18 Oct 2012 10:36:20 GMT

Server: Apache/2.2.14 (Win32)

Content-Length: 230
Content-Type: text/html; charset=iso-8859-1

Connection: Closed

<IDOCTYPE HTML PUBLIC "-/IETF//DTD HTML 2.0//EN">

<html>
<head>
<title>400 Bad Request</title>
</head>
<body>
<h1>Bad Request</h1>
<p>Your browser sent a request that this server could not

understand.</p>
<p>The request line contained invalid characters following the

protocol string.</p> </body> i
</html>

s e

L

P o
Ay

tio

n4Fun.com

* v TTeswsunowis derviet instance, ¥ 777 MY SvvIEL Container calls the

Se i i
rvlet instance so that jt becomes eligible for garbage collection,

Working with cookies:

= &) M*CP

Cookies in Servlet

A cookie is a small piece of information that is persisted between the multiple client requests.

A cookie has a name, a single value, and optional attributes such as a comment, path and domain
qualifiers, a maximum age, and a version number.

How Cookie works

By default, each request is considered as a new request. In cookies technique, we add cookie with

m the servlet. So cookie is stored in the cache of the browser. After that if request s

response fro - . P
senFt’ by the user cookie is added with request by defanlt. Thus, we recognize the user as the o

uscr.

e S AT

T

Education4Fun.com

Types of Cookie

There are 2 types of cookies in servlets.

. Non-persistent cookie’fv/‘@
- —

2. Persistent cookic ___v_/;_) P |

-

Non-persistent cookic

It is valid for single session only. It is removed cach time when user closes the browser.

Persistent cookie

It is valid for multiple session . It is not removed each time when user closes the browser. It is

removed only if user logout or signout.

Advantage of Cookies

1. Simplest technique of maintaining the state. v~
W

2. Cookies are maintained at client side.

Disadvantage of Cookies

1. It will not work if cookie is disabled from the browser.

2. Only textual information can be set in Cookie object.

Cookie class

javax.servlet.http.Cookie class provides the functionality of using cookies.

It provides a lot of useful methods for cookies.

Constructor of Cookie class

Constructor Description
| .
Cookie() ' constructs a cookie.
|
|
Cookie(String name, String constructs a cookie with a specified name a

va]ﬁl value.

Education4Fun.com

Useful Methods of Cookice class

There ;] -
Te are given some Commonly ygey Methods of (e Cookie clagg

Method Description

&

public void setMaxAge(int = Segs the maximum

&¢ age of the cookic in seconds,
expiry) "'_95 '
public String getName()

Returns the name of the cookie. The name cannot

changed after creation. '

public String getValue() J[Returns the value of the cookie.

public void setName(String changes the name of the cookie.
name)

x

- changes the value of the cookie.

pubiic void setValue(String

value)

Education4Fuh'.cc'>'m

e TR R R

Other methods required for using Cookics
For adding cookie or getting the value from the cookie, we need some methods

provide other interfaces. They are:

1. public void addCookie(Cookic ck):method of HitpServletResponse

interface 1s to add cookie in response object,

35

public Cookie|] getCookies():method of HittpServletRequest interface is use
return all the cookies from the browser.

How to create Cookic?
Let's see the simple code to create cookie.

- Cookie ck=new Cookie("user","sonoo jaiswal");//creating cookie object
response.addCookie(ck);//adding cookie in the response

N

]

How to delete Cookie?

Let's see the simple code to delete cookie. It is mainly used to logout or
signout the user.

1. Cookie ck=new Cookie("user","");//deleting value of cookie
2. ck.setMaxAge(0);//changing the maximum age to 0 seconds
3. response.addCookie(ck);//adding cookie in the response

How to get Cookies?

Let's see the simple code to get all the cookies.

1. Cookie ck[]=request.getCookies();

2. for(int i=0;i<ck.length;i++){

3. out.print("
"+ck[i].getName()+" "+ck[i].getValue());/printing name and value
of cookie

4. }
Simple example of Servlet Cookies

In this example, we are storing the name of the user in the cookic object and
accessing it in another servlet. As we know well that session corresponds to the
particular user. So if you access it from too many browsers with different values,

you will get the different value,

index.html‘/

Education4Fun.com

. </form>

L B S

<form action="serviet1" method="post"> i
. m
Name:<input type="text" name="userName"/>

<input type="submit" value="go"/>

FirstServlet java
..______.—-_..2-—--0

~ 1. import Java.io.®;
~2. import javax.serviet.®;
~ 3. import javax.serviet.http.*;
,: 4. public class FirstServlet extends HitpServiet {
i public void doPost(HttpServietRequest request, HttpServletResponse response)
< 6 tryd
7. response.setContentType("text/html"); ‘/
8. PrintWriter out = response.getWriter(); /
9. String E#e_g_llgstf;eff’ar_a}pleter("userName'?i‘_
10. out.print("Welcome "{n
1. Cookie c__k=new Cookie("uname",n);//creating cookie object \/
12. response.addCookie(ck);//adding cookie in the response
13. //creating submit button
14. out.print("<form action="servlet2>"); v
1 15. out.print("<input type='submit' value='go">");
16. out.print("</form>"); i
17 out.close();/,
7 18. }catch(Exception €) {System.out.println(e);}
19. }}
SecondServlet.java
/ﬁ___l. import java.io.*;

©® N ba w il

10.

11. out.close();

13.
13.

14. }

import javax.servlet.™;
import javax.servlethttp.*;

public class SecondServlet extends HttpServlet {
public void doPost(HttpServletRequest request, HttpServletResponse response){
try{

response.setContentType("text/htm 1"}
PrintWriter out = response.getWriter();
Cookie rl:lcj_]frequest.gchookics(); &«)
out.print("H?llo "+0E£(.}_].getVﬁlue()); '

}catch(Exception e) {System.out.printin(e);}

}

Education4Fun.com

web.xml
<web-app>
<servlet> v
<servlet-name>s | </servlet-name> \/
<servlet-class>FirstServlet</servlet-class> *
</servlet>
<servlet-mapping>
<servlet-name>sl </servlet-name>

<url-pattern>/servlet] </url-pattern>

W H O W e

</servlet-mapping>
10. <servlet>
11.<servlet-name>s2</servlet-name>
12. <servlet-class>SecondServlet</servlet-class>
13.</servlet> v

14. <servlet-mapping>
18, <servlet-name>s2<fservlet—naté>
16. <url-pattern>/servlet2</url-pattern>

i

17.</servlet-mapping>
18. </web-app>

’/ @!ucnl:%ﬁ&!l’.oeh&*
& € f L[loclhostdsss Cocbies

Nmne:,i?ga_»i Malik

[90]

TR

1) [tocathost2828/Cookies/s. x Y}

& C f U lomlhostssas/Cookies/senvietl

Welcome R Xy
g0

Education4Fun.com

el -

% \
Session Tracking in Servlets \ o y g/
{"

Session simply means a particular interval of tim/er.,_ ﬁ“ i

Session Tracking is a way to maintain state (data) of an user. It is also in
known as session management servlet. A

Education4Fun.com

Hittp protocol is a stateless so we need {o maintain state using session tracking techniques.

Fach time user requests to (he server, server treats the request as the new request. 5o we

need (o maintain the state of an user (o recopnize 10 particular wser. |

TP s stateless that means each requestis considered as the new request. 1t s shown in

2 the figure given below:

e Why use Session Tracking?

| To recognize the user 1S used to recognize the parficular user.
-
Session Tracking Techniques

There are four techniques used in Session tracking:

'\ i
Ao L Cookic

= 2. Hidden Form Field?
3. URL Rewriting * E
: 4. HttpSession »
2) Hidden Form Field &
In case of Hidden Form Field a hidden (invisible) textfield is used for maintaining the e

state of an user.

In such case, we store the information in the hidden ficld and get it from another
servlet. This approach is better if we have to submit form in all the pages and we don't

want to depend on the browser.

"

Let's see the code to store value in hidden field.

| <input type="hidden" name="uname" value="Vimal Jaiswal™
pegm—— pre—

£

Here, uname is the hidden field name and Vimal Jaiswal is the hidden field value.

Real application of hidden form field
y used in comment form of a website, Tn such case, we store page id ov page

It is widel
hidden field so that each page can be uniquely identified.

name in the

Advantage of Hidden Form Field

i 3

ducation4Fun.com

L. It will always work whether cookic is disabled or not.
Disadvantage of Hidden Form Field:

1. It is maintained at server side, -

2. Extra form submission is required on each pages.

3. Only textual information canbg used, ,
Example of using Hidden Form Iield ;

In this example, we are storing the name of the user in a hidden textfield and getling
that value (rom another servlet,

index.html

1. <form action="scrvle(1"> v~
2. Name:<input type="text" name="userName"/>
 /
3. <input type="submit" value="go"/> " !
4. <form> v~
FirstServlet.java ,
l. importjava.io.*; -~ > _
2. import javax.servlet.*; / |
3 importjavax.sewlet.http.*l; e
4. public class FirstServlet extends HttpServlet { =
5. public void doGet(HttpServletRequest request, HttpServletResponse response) {
6. try{ =
7. response.setContentType("text/html"); il
8. PrintWriter out = response.getWriter(); .~
9. String g_=request.getParameter("userName"); 7~ -
10. out.print("Welcome "+nl;
11. . //creating form that have invisible textfield
12. S out.print("<form action='servlet2’>"); ~—— R / o
13. out.prini "<input type="hidden’ name="uname' value=""nt">);
14. out.print("<input type='submit' value='go>"); -
15. out.print("dfonn>");_’,]
16. out.éloseQ; :
17 }catch(Exccp'Fi_dn e) {Systemtout.prmtln(e):}
18. })
19. }
SecondServlet.java

import java.io.™;
1 af e
import javax.servlet.”;

i j let.http.*;
import javax.serv N
public class SecondServlet extends HttpServlet {

Sl

Education4Fun.com

; 5. public void doGet(HttpServletRequest request, HttpServletResponse response)
1

6. try{
7. responsc.setContcntType("tcxifhtm[");
8. PrintWriter out = response.getWriter();
9. //Getting the value from the hidden ficld ‘,/f
10. String n=rcqucsl.gctPummcicr("ununw");
11. out.print("Hello "+n):
il 12. out.close():
13. }eatch(Exception e){System.out.printin(e);}
14. }
15.}

web.xml

<web-app>

<servlet>

<servlet-name>s1</servlet-name> Al)
<servlet-clasg>F irstServlet</servlet-class> T
</serviet>

<servi‘ct-mappin 2> /'
<servlet-name>s1</serviet-name>
<url-pattern>/servlet1</url-pattern>

D 00 3 L R W N —

</servlet-mapping>
10. <serviet>
11.<servlet-name>s2</servlet-name> e

12. <servlet-class>SecondServlet</servlet-class> o / \(_ -
13. </servlet> N

14. <servlet-mapping>

15. <servlet-name>s2</servlet-name>
16. <url-pattern>/servlet2</url-pattern>
17. </servlet-mapping>

18. </web-app>

3)URL Rewrit'mg' @

Tn URL rewriting, we append a token or identifier to the URL of the next Servlet or the
next resource. We can send parameter name/value pairs using the following format:

url?namel=valuel &name2=value2&??, |
- e — / . L

A name and a value is separated using an equal = sign, a parameter name/value pair is
separated from another parameter using the ampersand(&). When the user clicks the

hyperlink, the parameter name/value

Education4Fun.com

pairs will be passed to the server, FFrom a Servlet, we can use getParameter() method to

obtain a parameter value, |
-~ / |
T3 |
~ |

1. Towill always work whether cookie is digsabled or not (browser independent).
~ r

Advantage of URL Rewriting

Y. Bxtra form submission is not required on each pages,

Disadvantage of URL Rewriting
. 1t will work only with links.

2. 1t ean send Only textual information. =

Example of using URL Rewriting

In this example, we are maintaning the state of the user using link. For this purpose, we
are appending the name of the user in the query string and getting the value from the

query string in another page.

index.html

1. <form action="servlet]">

!J

Name:<input type="text" name="userName"/>

4

3. <input type="submit" value="go"/>

4. </form>
FirstServlet.java
import java.io.*; &
2 importjavax.servlel.*; e

/

3. import javax.serviet.http.*; -
4. public class FirstServlet extends HttpServlet {
public void doGet(HttpServletRequest request, HittpServletResponse response) |

5
6. try{
p response.setContentType("text/html"); e e
8. PrintWriter out = response.getWriter();
9. String rfreq uest.getParameter("userNanw");
10, out.priny("Welcome "+n),
_______‘_____.——-
i

Education4Fun.com

1. //appending the username in the query string a9

12. out.print("visit");
13. out.close(); ’ L R ——
14. }eatch(Exception €) {System.out.println(e);}
15 3}
SecondServlet.java
I. import java.io.*; //
2. import javax.servlet.™; —

3. import javax.servlet.http.*; -

4. public class SecondServlet extends HttpServlet {
5. public void doGet(HttpServletRequest request, HttpServletResponse response)
jo

—

6 try{ 5=
7 response.setContentType("text/html"); o

8. PrintWriter out = response.getWriter();

9 //getting value from the query string

10. String n=request.getParameter("uname");

11. out.print("Hello "+n); il

12. out.close(); ol

13. } catch(Exception e) {System.out.println(e);}

14. })

web.xml
<web-app>
<servlet>
<servlet-name>s|</servlet-name>
<servlet-class>FirstServlet</servlet-class>
</servlet> ' '
<servlet-mapping>
<servlet-name>s1</servlet-name>
<url-pattern>/servletl</url-pattern>
</servlet-mapping>
10. <servlet>

11. <servlet-name>s2</servlet-name>
12. <servlet-class>SecondServlet</servlet-class>
13. </servlet>
14. <servlet-mapping>
15. <servlet-name>s2</servlet-name>
16. <url-pattern>/servlet2</url-pattern>
17.</servlet-mapping>
18. </web-app>

Education4Fun.com

= __”_,..a-" R
,@/. 6 _%-— .
T 10 | G - —s—
4) HupSession interlace .4*9 _ =

]
. . . L} Ll . ll
In such case, container creates i Session id for each user.The container uses this id to 1|
identily the particular nser. An object of HipSession enn be used o perform two lasks: |
1
, . F
1. bhind objects
> view and manipulate information about o session, stch ag the session identifier,
creation time, and last aceessed time.
How to get the HitpSession objeet 7
The HitpServietRequest interface provides two methods to get the object of
HupSession:
1. public HttpSession getSession():Returns the current session associated with
this request, or if the request does not have a session, creates one.
2. public HttpSession getSession(boolean create):Returns the current
HupSession associated with this request or, if there is no current session and
create is true, returns a new session.
Commonly used methods of HttpSession interface
1. public String getld():Returns a string containing the unique identifier value.
2. public long getCreationTimeO:Rctums the time when this session was
created, measured in milliseconds since midnight January 1, 1970 GMT. v

3. public long getLastAccessedTimeO:Retums the last time the client sent a
request associated with this session, as the number of milliseconds since
midnight January 1, 1970 GMT.

4. public void invalidate():Invalidates this session then unbinds any objects
bound to it. :
Example of using HitpSession’ “ ' ' v
In this example, we are selting (he aftribute in the session scope in one serviet and
getting that value from (he session scope in another serviet. To set the attribute in the
session scope, we have used the setAltribute() method of HttpSession interface and to

get the attribute, we have used the getAttribute method.

index.html
1. <form action="servlet]"~
\
2. Name:<input type="tex!" pame="userName"/>
 '_j,_ :j

3. <input type="submit" value="go"/>

4, </form=

Education4Fun.com

FirstServlet.java

I. import java.io.*; 4 -
2. import javax.serviet®;
3, import javax.serviethtip. ™,
4. public class FirstServiet extends HipServiet { i
5. public void doGet(HupRervietRequest reguest, HiupServietResponse response) |
0. (ryy d
7. response.setContent Type("text/himl");
8. PrintWriter out - response.petWriter(),; 4
9, Slring@ request.petParameter(MuserName"); -
10, out.print("Welcome "), ~ / /
1. HitpSession session 1'cqucsl.gclScs:<in%_ <
12. scssion.m‘:lAl'El'ihlllc("u|m_|_lw",:]);
13, outprint("<a href='servle2"visit=/a=");
14. nul.clnsc():/
15. Veateh(Exception e){System.out.printin(e):}
16. }}
SecondServlet.java
1. import java.io.™;
2. import javax.serviet.®;
3. import javax.serviet.http.*;
4. public class SecondServlet extends HttpServlet {
5. public void doGet(HttpServletRequest request, HttpServletResponse response)
6. try{
7. response.setContentType("text/html");
8 PrintWriter out = response.getWriter();
9 HttpSession session=request.getSession(false);

10. String n=(String)session.getAttribute("uname'); o
nng-n (String)session {;e “_lic(uname")
i1. out.pnni("HelTo "+n); K-/

—_

12. out.close();
13. 1 cateh(Exception ¢){System.out.printin(e);}

e

S

~
S
i

web.xml

<web-app>~

<servlet> E,f
<gervlet-namg>s1</servlet-name=>
<servlet-class>FirstServlet</servlet-class>

</serviet>

AT SN VO NN

Education4Fun.com

<servlet-mapping>
<gerviet-name>sl </serviet-name>

<url-pattern>/serviet </url-pattern>

ol

</serviel-mapping=

10. <servlet>

1. <servlet-name~s2</servict-name=
I2.‘iscr\'lcl-ch\ss“ScmmlScrv|u|*-e’scrvlcl-clnss?-
13, <seeviet>

14, <servlet-mapping™

15. <serviet-name>s2</serviet-name=

16. -:m‘l-pullcm}/scwlcl?.d url-pattern>

1 7. </serviet-mapping>

18. </web-app> /

Deployment Descriptor:

In a java web application a file named web.xml is known as
deployment descriptor. It is a xml file and is the root element for it.
When a request comes web server uses web.xml file to map the URL
of the request to the specific code that handle the request.

Education4Fun.com

Sample code of web.xml file:
<web-app>

<serviet>
<servlet-name>servletName</servlet-name>
<servlet-class>servletClass</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>servletName</servlet-name>

<url-pattern>*.*</url-pattern>
</servlet-mapping>

</web-app>

How web.xml works:

When a request comes it is matched with url pattern in servlet
mapping attribute. In the above example all urls mapped with the
servlet. You can specify a url pattern according to your need. When
url matched with url pattern web server try to find the servlet name in
servlet attributes same as in servlet mapping attribute. When match
found control is goes to the associated servlet class.

Servlet “"Hello World” example by
extending HttpServlet class.

HelloWorld.java

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**

* This servlet program is used to print "Hello

World"
*on client browser using HttpServlet class.

* @author java tutorial point

*/

public class HelloWorld extends
HttpServlet { private static

Education4Fun.com

final long serialVersionUID
1L;

‘/no-argument constructor.
public HelloWorld()

}

protected void
doGet (HttpServletRequest
request, HttpServletResponse

response) throws
ServletException, IOException {
response.setContentType ("text/html");
PrintWriter out = response.getWriter();

out.println ("

Hello World using HttpServlet class.

"

out.close();

}

web.xml

xml version="1.0" encoding="UTF-8"2>
<web-app id="WebApp ID" version="2.4"

xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-

instance"

2ee

http://java.sun.com/xml/ns/j2ee/web-
app_2_4.xsd">

<servlet>

<servlet-name>HelloWorld</servlet-name>
<servlet-class>

com.javawithease.business.HelloWorld
</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>HelloWorld</servlet-name>
<url-pattern>/HelloWorld</url-pattern>

xsi:schemaLocation="http://java.sun.com/xml/ns/j

Education4Fu'n.co'm' o B

</servlet-mapping>

</web-app>
OQutput:
1w |
Creating-theDiveotory Structure
Sun Microgystem defines a unique difectory striicture that*
musl be [ollowed to grealg a serviet appligati
PSPe (QUowep o prealy f SVl REPATa "

(Al A 1Al Al M1

i

v Name it o
Apphcation

|

Static
Resources
(css.images elc)

WEB-INF

html and jsp file

b wi.>
€8 ®cjq>
<>

web.xml

MySandatclass

Create the above directory structure inside Apache-
Tomcat\webapps directory. All HTML, static files(images, css
etc) are kept directly under Web application folder. While all

the Servlet classes are kept inside classes folder.
The web . xml (deployement descriptor) file is kept under WEB-INF
folder.

serviet API

http://ecomputernotes.com/serv!et/intro/servlet—api

Education4Fun.com

. &Y e
e qﬁ/ 3 |
xdvantages of JSP over Servlet C’\g . |
Ay

W
There are many advantages of JSP over the Serviet. They / 7J _
=4

are as follows:
| - /s
1) Extension to Servlet s |
— /2 |
% ',

ISP technology is the extension to Servlet technology.

We can use all the features of the Servlet jn JSP. In
addition to, we can use implicit objects, predefined tags,

expression language and Custom tags in ISP, that makes
JSP development easy. = e

—,_'__.___,_F-—
—_—

2) Easy to maintain
~

JSP can be easily managed because we can easily
separate our business logic with presentation logic. In
Servlet technology, we mix our business logic with the

presentation logic.

3) Fast Development: No need to recompile and redeploy

If JSP page is modified, we don't need to recompile and
redeploy the project. The Servlet code needs to be
updated and recompiled if we have to change the look

and feel of the application.

4) Less code than Servlet

In JSP, we can use many tags such as action tags, JSTL,
custom tags, etc. that reduces the code. Moreover, we can

use EL, implicit objects, etc-
The Lifecycle of a JSP Page (\-

The JSP pages follow these phases:

Translation of
JSP Page 0

Education4Fun.com

l) Compilation of jsp
Page

3) Classloading (the classloader loads class file)

e

leo Instantiation (Object of the Generated l':' o

Servlet is created). Initialization (the

container invokes jsplnit() method). |
qu Request processing (the container invokes
_JspService() method). ’19 Destroy (the

container invokes jspDestroy() method).

o
- isp Buffer o
. " (dynamiccontent]
5P Translatof \
: . o = T i
' serviet i Servietobject
(javafile) Mr/
: compiler " > JRE !
cléss file /

[e ST R B e & T

Education4Fun.com

later like initialization, committing response to the

browser and destroy
Creating a simple JSP Page

To create the first JSP page, write some HTML code as
given below, and save it by .jsp extension. We have
saved this file as index.jsp. Put it in a folder and paste
the folder in the web-apps directory in apache tomcat to

run the JSP page.

index.jsp

Let's see the simple example of JSP where we are using
the scriptlet tag to put Java code in the JSP page. We

will learn scriptlet tag later.

1.<html> " _ //_7
2. <bod >/ | /) ’
(2% bt 2rS) 0z o) =
4.</body>

5. </html>

It will print 10 on the browser.
How to run a simple JSP Page?

Follow the following steps to execute this JSP page:

o Start the server
» Put the JSP file in a folder and deploy on the server

o Visit the browser by the URL
http: //localhost portno/contextRoot/JspﬂIe for

example, ;
http: //localhost 8888/myappl|cat|on/|ndex Jjsp

Do | need to follow the directory structure to run a simple

JSP?

Education4Fun.com

No, thfere iS no need of directory structure if you don't ha
cl-ass files or TLD files. For example, put JSP files in a fc:,ldve
directly and deploy that folder. It will be running fine. o
However, if you are using Bean class, Servlet or TLD file
the directory structure is required. ,

The Directory structure of JSP

The d‘irectory structure of JSP page is same as Serviet. We
contain the JSP page outside the WEB-INF folder or in any
directory.

web-app

(Context-Root)

WEB-IMF

_i.

. classes

“ciass files

web.xml /
lib, | &=

static Resources (eg. Huml.lmages.css el:c.l‘

5P

The JSP API
1. The JSP API
2. javax.servlet.jsp package
3. The JspPage interface
4. The HttpJspPage interface

The JSP API consists of two packages:

1.javax.servlet.jsp

Education4Fun.com

2.javax.servlet.jsp.tagext
javax.servlet.jsp package

The javax.servlet.jsp package has two interfaces and
classes.The two interfaces are as follows:

1.JspPage
2. HttpJspPage

The classes are as follows:

o JspWriter
o PageCont

ext o
JspFactory
0]
JspEnginelnf
O o
JspException
o JspError
The JspPage interface

According to the JSP specification, all the generated
servlet classes must implement the JspPage interface. It
extends the Servlet interface. It provides two life cycle

methods.

Methods of JspPage interface
1. public void jspInit(): Itis invoked only once during

the life cycle of the JSP when JSP page is requested
firstly. It is used to perform initialization. It is same
35 the init() method of Servlet interface.

Education4Fun.com

2. publi id j
dp I?Ilc vcuc! JspDestroy(): It is invoked only once
uring the life cycle of the jsp before the Jsp page i
is

destroyed. It can be
. used to perform s
operation. ome clean up

The HttpJspPage interface

The HttpJspPage interface [
provides the one lif
method of JSP. It extends the JspPage interfla\:?(a(.:yC|e

Method of HttpJspPage interface:

1. public void _jspService(): It is invoked each time
when request for the JSP page comes to the
container. It is used to process the request. The
underscore _ signifies that you cannot override this

method.

Introduction:

JSP technology is used to create web application just like Servlet
technology. It can be thought of as an extension to Servlet because it
25 provides more functionality than servlet such as expression language,

JSTL, etc.

A JSP page consists of HTML tags and JSP tags. The JSP pages are easier

an Servlet because we can separate designing and

to maintain th .
al features such as Expression

development. It provides some addition
Language, Custom Tags, etc.

Advantages: .
1. Extension to Servlet

2.Easy to maintain

3 Less code than Servlet |
4. Less Development. No need to recompile and redeploy

JSP directives
1. JSP directives

'Education4Fun.com

1. page directive
2. Attributes of page directive

The jsp directives are messages that tells the web
container how to translate a JSP page into the
corresponding servlet.

There are three types of directives:

o page
directive o
include
directive o
taglib
directive

Syntax of JSP Directive @
1.<%@ directive attribute="value" %>

JSP page directive
The page directive defines attributes that apply to an

entire JSP page.

Syntax of JSP page directive
1.<%@ page attribute="value" %>
Attributes of JSP page directive

o importy”

o content e
Type o £ o
extends

° /

info

Education4Fun.com

O

buffer

o language
Q

isELIgnor
ed o
isThreadS
afe o
autoFlush
o session

o

pageEncod

ing o
errorPage

o isErrorPage

Education4Fun.com

(X
1)import
The import attribute is used to import class,interface

or all the members of a package.It is similar to im
class or interface,

Example of import attribute

1. <htmlI>

2. <body>

3.

4. <% @ page import="java.util.Date" %>

5.Today is: <%= new Date() %> «), Z

6. { _

7.</body> / :

8. </html>
2)contentType
The contentType attribute defines the
MIME(Multipurpose Internet Mail Extension)
type of the HTTP response.The default value
is "text/html;charset=1S0-8859-1".
Example of contentType attribute

1. <html>

2. <body>

3.

4. <% @ page contentType=application/msword %>

5.Today is: <%= new java.util.Date() %>

6.

7. </body>

8. </html>

Education4Fun.com

3)extends

The extends attribute defines the parent
class that will be inherited by the
generated servlet.It is rarely used.

4)info

This attribute simply sets the information of
the JSP page which is retrieved later by
using getServletInfo() method of Servlet
interface.

Example of info attribute
. <htmlI>
. <body>

. <%@ page info="composed by Sonoo Jaiswal" %>
.Today is: <%= new java.util.Date() %>

. </body>
. </html>

OO\lngn.p.E,dN,_L

The web container will create a method
getServletInfo() in the resulting
servlet.For example:

1. public 5tring getServletInfo() {_ "
_ return "composed by Sonoo Jaiswal";

3.}

5)buffer

' he buffer size in
The buffer attribute sets t
kilobytes to handle output generated by the

N

Education4Fun.com

JSP page.The default size of the buffer is
8Kb.
Example of buffer attribute

1. <html>
2. <body>

3
4. <%@ page buffer="16kb" %>

5.Today is: <%= new java.util.Date() %>

6.
7.</body>
8. </html>

6)language
f

The language attribute specifies the
scripting language used in the JSP page.

The default value is “java".

7)isELIgnored

We can ignore the Expression Language (EL) in jsp
by the isELIgnored attribute. By default its value is f

Language is enabled by default. We see Expression
Language later.

1.<%@ page isELIgnored="true" %>//Now EL will be
ignored

8)isThreadSafe
Servlet and JSP both are multithreaded.If you want

to control this behaviour of JSP page, you can use Is
of page directive.The value of isThreadSafe value is

Education4Fun.com

true.If you make it false, the web container will seri
requests, i.e. it will wait until the JSP finishes
responding to a request before passing another
request to value of isThreadSafe attribute like:

<%@ page isThreadSafe="false" %>

The web container in such a case, will generate the
servlet as:

1. public class SimplePage_jsp extends HttplspBase
2. implements SingleThreadModel{

9)errorPage

The errorPage attribute is used to define the
error page, if exception occurs in the current
page, it will be redirected to the error page.

Example of errorPage attribute

.//index.jsp
. <htmli>
. <body>

1
2
3
4. ,
5. <%@ page errorPage="myerrorpage.jsp" %>
6.
7. <%= 100/0 %>

8

9

. </body>
10. </html>

10)isErrorPage

———T T

Education4Fun.com

The isErrorPage attribute is used to declare that the
current page is the error page.

Example of isErrorPage attribute
1.//myerrorpage.jsp
2.<html>
3. <body> b
4.
5.<%@ page isErrorPage="true" %>
6.
7. Sorry an exception occured!

8.The exception is: <%= exception %>

0.
| 10. </body>
11. </html>
I TAGS in JSP: @
. ' Declaration tag:/

Whenever we use any variables as a part of JSP we have to use those
variables in the form of declaration tag i.e., declaration tag is used for

declaring the variables in JSP page.

Syntax:

<% Variable declaration or method definition %>

Example-1:

Education4Fun.com

<%! inta= 10, b=30, c:%> é
<%! inta=10, b=30, ¢;%> -

Expression tag: -~
Expression tags are used for writing the java valid expressions as
a part of ISP page.

Syntax:

<%= java valid expression %>
el
Example-1: / / & w e =
rd

<%! inta=10, b=20 %>
<%=a+ b"/’b}

Scriplet tag: 2~
Scriplets are basically used to write a pure java code. Whatever the

java code we write as a part of scriplet, that code will be available as a
part of service () method of servlet.

\

Syntax: il AF—- ‘

<% pure java code%>
= Implicit Objects in JSP:

These Objects are the Java objects that the JSP Container makes
available to the developers in each page and the developer can call
them directly without being explicitly declared. JSP Implicit Objects

are also called pre-defined variables.

Following list is the nine Implicit Objects that ISP supports —

1. request:

This is the HttpServletRequest object associated with the request.

2. response:

Education4Fun.com

This is the HttpServletResponse object associated with the response to
the client.

3. out:

This is the PrintWriter object used to send output to the client.

4. session:

This is the HttpSession object associated with the request.

5. application:

This is the ServletContext object associated with the application context.

6. config:

This is the ServletConfig object associated with the page.

7. pageContext:

This encapsulates use of server-specific features like higher
performance JspWriters.

8. page:

This is simply a synonym for this, and is used to call the methods
defined by the translated servlet class.

9. exception:

The Exception object allows the exception data to be accessed by
designated JSP.

JSP Methods: ®

JSP Declaration represents a global area for the whole JSP file where
programmer can declare variables and methods that can be used
throughout JSP code. That is, global variables and methods are

declared in Declaration tag.

Education4Fun.com

Example:

<HTML>
<HEAD>
<TITLE>Creating a Method in
JSp</TITLE> </HEAD>
<BODY>
<H1>Creating a Mcthod in jsp</HI1> a/ 1

0/
“H-"-u!

Int Double(int number) b &
{ " il

return 2*number;

1
f

%>

<%
out.println("The Double of 3 is =" +
Double(3)); %>
</BODY>
</HTML>

Control-Flow Statements: @

You can use all the APIs and building blocks of Java in your JSP
24 programming including decision-making statements, loops, etc.

<%/ int day = 3; %>

<html> _
<head><title>IF...ELSE Example</title></head>

<body>
<%yif(day ==1| dg/z_ﬂ { %>
<p> Today is weekend</p>
<% } else { %>
<p> Today is not weekend</p>
<%) %>
</body>
</html>

Loop Statements: @

i A S AT R RN 1 AP LA A5 i, v 2 £

rEducation4Fun.com

You can also use three basic types ol looping blocks in Java: for,

while, and do...while blocks in your JSP programming.

<%! int fontSize: %> -

<htmI>
<hcad><title>FOR LOOP Example</title></head>
e a =
c‘:;—-" == é- /“ ‘:’#_'_d//_,__,_.a—/‘—:‘;“‘

<body“
<Ypfor (@_ I; fontSize<= 3; fontSize++){ %>
-xtonl color ="green" size = ”<%_ fontSize =
Yo>"> ISP Tutonal

 \/@/
<%} %> ‘
</body>

</html>
JSP request implicit object:

The JSP request is an implicit object of type HttpServletRequest i.e.
created for each jsp request by the web container. It can be used to get
request information such as parameter, header information, remote
address, server name, server port, content type, character encoding

etc.

It can also be used to set, get and remove attributes from the jsp request
scope.

Let's see the simple example of request implicit object where we are
printing the name of the user with welcome message.

Example of JSP request implicit object

index.htm]|

<form action="welcome.jsp">
<input type="text" name="uname">
<input type="submit" value="go">

</form>

welcome.jsp

Education4Fun.com

<%

String

hame=request.getParameter("uname");

out.print("welcome "Fname); Y% |

JSP Session @

}1|1 this chapter, we will discuss session tracking in JSP. HTTP is a

s‘tatcloss“ protocol which means cach time a client retrieves a
Webpage, the client opens a separate connection o the Web server and
the server automatically does not keep any record of previous client
request.

Maintaining Session Between Web Client And Server
Let us now discuss a few options to maintain the session between the
Web Client and the Web Server —

Cookies = ﬁ

A webserver can assign a unique segsion ID as a cookie to each web
client and for subsequent requests from the client they can be
recognized using the received cookie.

This may not be an effective way as the browser at times does not
support a cookie. It is not recommended to use this procedure to

s maintain the sessions.

Hidden Form Fields . .
A web server can send a hidden HTML form field along with a unique

session ID as follows —

— "hidden" name = "sessionid" value = "12345">

at, when the form is submitted, the specified name
Ily included in the GET or the POST dz}ta.

er sends the request back, the session_id value

ack of different web browsers.

<input type
This entry means th
and value are automatica
Each time the web brows
can be used to keep the tr
This can be an effective way of keeping track of the session but
clicking on a regular (<A
in a form submission, SO
general session tracking.

HREF...>) hypertext link does not result
hidden form fields also cannot support

Education4Fun.com

URL Rewriting

You can append some extra data at the end of each URIL. This data
identifies the session; the server can associate that session identifier
with the data it has stored about that session.

For example, with http://tutorialspoint.com/[ile.htm;sessionid=12345, é, iy = Rad
the session identifier is attached as sessionid = 12345 which can be
accessed at the web server to identify the client.

URL rewriting is a better way to maintain sessions and works for
the browsers when they don't support cookies. The drawback here is
that you will have to generate every URL dynamically to assign a
session 1D though page is a simple static HTML page.

The session Object

Apart from the above mentioned options, JSP makes use of the
servlet provided HttpSession Interface. This interface provides a

way to identify a user across.

a one page request or
visit to a website or

store information about that user
By default, JSPs have session tracking enabled and a new HttpSession

object is instantiated for each new client automatically. Disabling
session tracking requires explicitly turning it off by setting the page
directive session attribute to false as follows —

<%(@) page session = "false" %>
The JSP engine exposes the HitpSession object to the JSP author

through the implicit session object. Since session object is already
provided to the JSP programmer, the programmer can immediately
begin storing and retrieving data from the object without any

initialization or getSession().

Education4Fun'.com

Here is a summary
object —)
S.No. Method & Deseription

of important methods availab|e through the session

1 !lz;n‘blic Object getAttribute(String name)
us method returns the object bound with the specified

name in this session. or : g
,ornullif
name. no object is bound under the

pu?:lic Enumeration getAttributeNames()
This method returns an Enumeration of String objects

cont_aining the names of all the objects bound to this
session. ‘

12

public long getCreationTime()
This method returns the time when this session was

created, measured in milliseconds since midnight
January 1, 1970 GMT.

Ul

public String getld()
This method returns a string containing the unique identifier
4 assigned
to this session.

public long getLastAccessedTime()
This method returns the last time the client sent a request

associated
5 with the this session, as the number of milliseconds since

midnight
January 1, 1970 GMT.

ublic int getMaxlnactiveIntcrvall() _ _
This method returns the maximum time interval, in seconds,

6 that the ‘
servlet container will keep this

accesses.

session open between client

public void invalidate()

Education4Fun.com

This method invalidates this session and unbinds any objects
7 bound
to it.

public booleanisNew()
This method returns true il the client does not yet know about

the
session or il the client chooses not to join the session.

o0

public void removeAttribute(String name)

This method removes the object bound with the specified
9 name from

this session.

public void setAttribute(String name, Object value)
10 This method binds an object to this session, using the name
specified.

public void setMaxInactivelnterval(int interval)
This method specifies the time, in seconds, between client

11 requests
before the servlet container will invalidate this session.

Session Tracking Example
This example describes how to use the HttpSession object to find out

the creation time and the last-accessed time for a session. We would
associate a new session with the request if one does not already exist.

<%(@ page import =
"java.io.* java.util.*" %> <%

// Get session creation time.
Date createTime = new Date(session.getCreationTime());

// Get last access time of this Webpage. |
Date lastAccessTime = new Date(scssion.gcthstAcccssed’hmc());

String title = "Welcome Back to my website";
Integer visitCount = new Integer(0);

Education4Fun.com

S}ri}@ visitCountKey = new String("visitCount")
Nr.mg userlDKey = new String("userlD");
String userlD = new String("ABCD");

.
b

// Check if this is new comer on your
Webpage. if (session.isNew()){
title = "Welcome to my website";
session.setAttribute(userlDKey, userlD);
session.setAttribute(visitCountKey,c— _

visitCount);

1
f

visitCount =
(Integer)session.getAttribute(visitCountKey);
visitCount = visitCount + 1;

userID =
(String)session.getAttribute(userIDKey);
session.setAttribute(visitCountKey,
visitCount); %>

<html>

<head>

<title>Session Tracking</title>
</head>

<body>
<center>
<h1>Session Tracking</h1>

</center>

<table border ="1" align = "center">
<tr bgcolor = "4#949494">
<th>Session info</th>
<th>Value</th>

</tr>

<tr>

<td>id</td> _ ‘
<td><% out.print(sessmn.getld()),
</tr>

<tr> _ |
<td>Creation Time</td>

0p></td>

Education4Fun.com

<td><% out.print(createTime); %></td>
</tr>

<tr>=

<td>Time of Last Access</td>

<td><% out.print(lastAccessTime); %o></td>
</tr>

<>

<td>User [ID</td>

<td><% out.print(userID); %></td>
</tr>

<tr>

<td>Number of visits</td>

<td><% out.print(visitCount); %></td>
</tr>

</table>

</body>
</html>

JSP Cookies: @

JSP Cookies — Cookies can defined as a small file that will be stored in
a browser, it is utilized information tracing purpose. Already Splessons
have discussed the cookies concept in serviet technology Servlet
Cookies. Following is the list of important useful methods associated
with the Cookie object which you can use while manipulating cookies

in JSP.

public void setDomainStringpattern
public String getDomain

public String getName

public String getValue

public String getPath

public String getComment

Following is the example which describes more about the cookies.
Following is the code to set the cookies.

index.jsp

Education4Fun.com

<htmi>
‘hl?“d.\' becolor "skyblue™ -
‘““i(‘ ac T . h
m dl,“l\n I“;“n'_l-"—‘h" ““.\”“‘d u(ng.-‘." _

—oenter inH‘R — /
ST 1 fanlessons :
xq"“;l‘]‘““ : \i l‘ R50ON ~.“l|]l1|" ."’1‘]'

First Name: <
rst Name: <input type "text”
name - "hest name” =/bes < br /o

¥ s P o \
Last Name: <input type—"text"
name-="last name"/~</1 /

as { [~ /br=/br ~input " ’

: o : PO 51 i
value="Submit" /></centers « /I'nrm‘l:‘ o o
- 'l‘l‘ti_\ >
</html>

Here _]USE created two forms they are First Name, Last Name and also
crcnk:d hllhfnil button. The GETmethod is the default method h; ‘.1.«;:
dat:.a from client to web server and it delivers a long string that qhor:.w
up in the browser’s Location. Never utilize the GET method in‘thc ._
event that you have secret key or other touchy data to go to the server.
The GET method has size constraint: just 1024 characters can be in a
solicitation string.

main.jsp

<%

// Create cookies for first and last names.
Cookie firstName = new

Cookie("f1 rst_name",
request.getParamcter("first_name"));
Cookie lastName = new
Cookie(“lasl_name",
requcsl.getl’aramcicr("Iust___nunw"));
// Set expiry date afier 24 Hrs lor both the
cookies. ﬁrstNamc.scanxAge((xﬂ*h{)*’lan;
lastNamc.selMaxAgc(ﬁU*ﬁt)*N);

/] Add both the cookies in the response |
header. rcsponsc.udd(.‘uukic((irstName -~
)s rcsponsc.addCookic(JastName);

%>

/’-‘

Education4Fun_C0m"‘-"*" z

<html>

<head>

<title>Setting Cookies</title>
</head>

<body>

<center>

<h1>Setting Cookies</h1>

</center>

<p>First Name:

<%=
request.getParameter("first_name")%
> </p>

<p>Last Name:

<%= request.getParameter("last_name")%>
</p></1i>

</body>

</html>

The request.getParameter() is used to retrieve the details from the
static page that id HTML page.

J

Education4Fun.com

