
Education4Fun.com

Education4Fun.com

Education4Fun.com

Education4Fun.com

Education4Fun.com

Education4Fun.com

Education4Fun.com

Education4Fun.com

Education4Fun.com

Education4Fun.com

Education4Fun.com

Education4Fun.com

Education4Fun.com

Education4Fun.com

Education4Fun.com

Education4Fun.com

Education4Fun.com

Education4Fun.com

NETWORK PROGRAMMING: I/O MULTIPLEXING

I/O multiplexing is the capability to tell the kernel that we

want to be notified if one or more I/O conditions are ready,

like input is ready to be read, or descriptor is capable of

taking more output.

Scenarios is which I/O multiplexing is used –

1. When client is handling multiple descriptors (like

standard input and network socket).

2. When client handles multiple sockets at the same time,

example - Web client.

3. When TCP server handles both listening and its

connected sockets.

4. When server handles both TCP and UDP.

5. When server handles multiple services and perhaps

multiple protocols.

I/O Models

There are 5 I/O models -

1. Blocking I/O

2. Non-blocking I/O

3. I/O multiplexing

Education4Fun.com

https://www.thedailyprogrammer.com/2016/09/network-programming-io-multiplexing.html

4. Signal driven I/O

5. Asynchronous I/O

There are two phases for any input operation -

1. Waiting for data to be ready

2. Copying data from kernel to process

Blocking I/O Model

By default, all sockets are blocking.

We use UDP in this diagram because it's easier, as we only

have to deal with sending and receiving datagrams.

There is a switch from running in the application to running

in the kernel, and returning back to application.

Most common error occurring is when system call is

interrupted by a signal.

Education4Fun.com

https://1.bp.blogspot.com/-bIV8rUDZT-Q/V-gQ951C__I/AAAAAAAAA0M/Tw3ALaY5Atg1Cxt44nik5uLFFCno5qhbQCLcB/s1600/blocking%2Bi-o.png

Non-blocking I/O Model

When we set a socket to nonblocking, we tell the kernel that

if an I/O request from me will put the process to sleep, return

an error instead of blocking the process (putting the process

to sleep).

This method is called polling. It is often a waste of CPU

time, but sometimes used on system dedicated to one

function.

I/O Multiplexing Model

Disadvantage - select requires two system calls instead of

one.

Education4Fun.com

https://4.bp.blogspot.com/-nuxhkC7P3Lw/V-juQA6zC8I/AAAAAAAAA0g/x7mRFzHbu9UldJAY4rrSqT2XscZ7eP_lQCLcB/s1600/non%2Bblocking%2Bio.png

Advantage - We can wait for more than one descriptor to be

ready.

Another alternative is using multithreading. Instead of

using select to block on multiple file descriptors, the program

uses multiple threads (one per file descriptor), and each

thread is then free to call blocking system calls like recvfrom.

Signal Driven I/O Model

Signals can tell the kernel to notify user process with SIGIO

signal when descriptor is ready.

Education4Fun.com

https://1.bp.blogspot.com/-zF2bGI0kpcM/V-jwJzjlcOI/AAAAAAAAA0s/QzJBphPFc_EkUMX1fKXyzY2S3Z47bjZ-wCLcB/s1600/iomultiplexing.png

First enable the socket for signal driven I/O and install signal

handler using sigaction system call. Return from this system

call is immediate and our process continues, it is not blocked.

When datagram is ready to be read, SIGIO signal is

generated for our process. We can either read the datagram

from the signal handler by calling recvfrom and then notify

the main loop that data is ready to be processed, or we can

notify the main loop and let it read the datagram.

Advantage - process is not blocked while waiting for data to

arrive, can continue executing.

Asynchronous I/O Model

It works by telling the kernel to start operation and notify the

process when it's complete, unlike signal driven I/O where

kernel notifies when process is initiated.

Education4Fun.com

https://4.bp.blogspot.com/-F1GwRT8Ro8I/V-jxPr53vUI/AAAAAAAAA0w/Qi119fQ05zoKPoF3xcg9xWdQGfcMsRlPwCLcB/s1600/signaldriven.png

