Unit-5 Graph Theory \& Thees:.

* Graph: A graph G is a par of sets

er

$\xrightarrow{\longrightarrow} 5$ edges $\left[e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right]$
$\leftrightarrow 5$ vesica $\left[v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right]$.
\$NULL Graph 1. A graph in which number of edges

The NOLL graph has Oedger $छ$ vertices

* Self loop: An edge joining a vertex lo itxeJF is called selF loop.

e_{1} is self loop.
* Paraller (or) Multiple edges

In a graph it may be possible to have mole than one edge with a single pair of vertices such edges are called paralled edges

e_{2}, e_{3}, e_{4} ole parallel edges.

* Simple Graph: A which contains neither sulf loop nor parallel edges is called Simple Graph.

* Complete Graph: A simple graph in whish there ir exactly one edge bl each pair of distinct vertices is called complete graph.

\& Total no. ofedqes for a complete graph with 50 vellice

$$
\begin{aligned}
& \Rightarrow{ }^{50} \mathrm{C}_{2} \quad 1225 \\
& \text { For } n \text { Verlica }
\end{aligned}{ }^{n} \mathrm{C}_{2} \% .
$$

* Mudligraph: A graph containing parallel ede ir called Mulligraph

$\mathrm{C}_{4}, \mathrm{c}_{2}$ at C parallel cones

Order ξ Size of Graph:-
The no. of Vellica in a graph $G \therefore$ called order
The no. of edge in a graph G is called sin
ex

$$
\begin{aligned}
& \text { order }=4 \\
& \text { size }=6
\end{aligned}
$$

4 Diferted Cotoph:
The graph is which the edererets of
the edas ast ale oldeled pasis if reitive, is called directed glaphe. "I dagraph

$$
c_{1}=(b, b), e_{2}=(E, b), c_{3}=(0, c)
$$

4 Non Directed Graph:
A glagh" which Ete elorments of the edye at ale unodeled pasis of of restica is called a non-Diritid glaph.

$$
\begin{aligned}
& c_{1}=\{a, b\},\{b, a\} \\
& c_{2}=\{a, c\},\{c, a\}
\end{aligned} \quad c_{3}=\{b, c\},\{c, b\}
$$

* Adjacent Vellica E Adjacent edger l
\rightarrow two veltica u E V ale said lo h_{1} adjacent if there cxirit an edge. (AV).
\rightarrow If two edge have a common vertex then they ate called adjacent edge

$$
V_{1} \xi V_{2}, V_{2} \xi V_{3}, V_{3} \xi V_{4}, V_{4} \xi V_{1} \text { arc }
$$ adjacent vesica

$$
e_{1} e_{2}, e_{2} e_{3}, e_{3} c_{4}, e_{4} c_{1} \text { arc }
$$ adjacent edge

* Finite \& Infinite Graph:-

A graph ir a finite if both ts vertex set ξ the edge set ale Finite. Otherwise infinite.

* Weighted Graph A graph in which weights are a assigined to evely edger is called a weighted graph.

1,2,3,4 are weight of the graph.
$\not \subset$ Path :
In a path, vertices and edger may be repealed any number

The number of edges in a pal-h is called length of the path.

A path of denath zero is called trivial path.

Path

$$
a-b-c
$$

$$
a-b
$$

$$
b-c
$$

a
\rightarrow Open path. A path in which initial \& terminal vertices are distinct is called open path.

$$
a-b
$$

-) Closed Path 1. A path which initial E terminal vertices are same

$$
a-b-c-a
$$

\& Simple Path:
A path is said to be simple if all the edger and vertices on path are different except possibly at the end poinl.s.
en

i) $a-b-c-a$
ii) $a-b-c-d-c-a$
i \& iii are
11) $a-b-c \cdot d$ simplepalth
iii) $a-b-c-d-a \quad$ i; ξ iv ats
i) $a-b-c-a-b$ nob simple paths.

* Circuit \quad Cycle:
\rightarrow A path of length $l \geq 1$, with repeated edges ε whore end points are equal is called a circuit.
\rightarrow In a circuit, repetition of veribice is allowed.
\rightarrow A cycle ir a circuit with no. other repeated vertices except the end point.
\rightarrow every cycle is a circuit but a circuit reed not be cycle.
es

* Ed Disjoint Path ξ Vertex Disjoint Path::

Two paths in a graph are said bo be ed re disjoint if they have no common eden, but they have a common vertices

Two paths in a graph are said, to be vellex disjoint if they have no/ common selfie

$\rightarrow\left(V_{0}, V_{4}\right),\left(V_{4}, V_{3}\right),\left(V_{1}, V_{4}\right)\left(V_{4}, V_{2}\right)$ are edge-disjoint-

$$
\begin{aligned}
& e d x-d \text { isjoint } \\
- & \left\{\left(v_{3}, v_{2}\right),\left(v_{2}, v_{5}\right)\right\} \quad \xi\left\{\left(v_{0}, v_{4}\right)\left(v_{14}, v_{1}\right)\right\}
\end{aligned}
$$

are vertex disjoint.

* Connected Graph 1.

A undirected graph is connected if there is a path b/n every pair of distinct Vertices of the graph

* Cot vertex:- It is a rolex by which if we remove that vertex then the graph will be disconnected graph
ex

Here C is cot veter V_{2}, V_{3}, V_{5} are cut ilex.

* Cut set.
\rightarrow Cut set partition all the retries into two disjoined rets
\rightarrow Cut set always contain on dy one branch ε reit of edge are chords.

$$
\text { branch }=\{b, c, e, h, k\}
$$

$$
\text { cold }=\{a, d, f, 9\}
$$

(1) $\{a, b\}$
(2) $\{a, c, d\}$
(3) $\{d, e, f\}$
(4) $\{h, g, f\}$
(5) $\{f, g, k\}$
are cut set.

AX' Edge Connertivivily:
each culture of a connected graph G_{n} consist- of a certain number of edges the number of edges

He smallest cut bet is dofind a) the ede connectivity.

A Bridge: It is an edge with connects the two vertices \& remora al of such edge disconnect the graph into two disjoint graph e
 4 i Bridge edge.
Vertex Connectivity:- The vertex. connelivily of a connected graph G is the smallest number of vertices whose removal disconnects G

b \& c are cut verleces

* Cycle Graph!

A cycle graph of order n is a connected graph whose edge Form a cycle of length n is denoted by C_{n}

* Wheel Graph A wheel graph of ord n is a graph obtained by joining a single new vertex bo each vertex of cycle graph $\left(C_{n-1}\right)$ of order ($n-1$). deneld by w_{0} (vile a wheel)

\& Bipaibitue Graph:
\rightarrow Ils is a simpul graph
\rightarrow In which the set of Veilices can he paititioned into hwo sets X and Y

$$
\because G(x, y, E)
$$

若

Compule Bipartitule Graph:.
It is a Bipartitue Graph which their is an b/n every verlex in x e every salex in 4 .

G

G
$\$ k$-Marlite Graph.
It is a k partite graph we will be having dividing into that many disjoint subjects.

* Peterson Graph. It is undirected graph wilt h 10 Vertices $\xi 15 \mathrm{edeges}$

I E is a non planar graph.

* Planar graph is a graph. that can be drawn in the plane without any edge crossing.

P Subgraph:- Suppose there are two graph

$$
\begin{aligned}
& H=\left(V_{2}, E_{2}\right) \\
& G=\left(V_{1}, E_{1}\right)
\end{aligned}
$$

H is a sub graph of G if set of Veltica of graph H is a subset. of graph G. set of edge of raph H is a subset of graph G

$$
(H)
$$

(G)

* Component let G be a graph ξ del V be a vellex in G. The suburaph G^{\prime} of G consisting of all edges ξ vellices G is called a Component graph
cr

* Euler Graph:

Vo be Euler path It is a path that. traverse each edge exactly once ξ only path.

Euler graph a graph that contains an euler path is called coder
e. 0 ot e Euler circuit. Fine G dart vertex arr same. It is a circuit that Lavers Peach edge exactly one द only on \rightarrow Vertex can be repeated but. not edge.
$y^{\prime \prime}$

ex.

$$
\begin{aligned}
& \text { 1) } \begin{array}{l}
\text { a } \rightarrow \text { (} \rightarrow d \rightarrow b \rightarrow a \\
d \rightarrow e \\
e(1)
\end{array}
\end{aligned}
$$

$$
a \rightarrow c \rightarrow d \rightarrow b \rightarrow c \rightarrow d \rightarrow a
$$

$0, d \rightarrow$ hoo odd
(euler path)

all odd not a cuter graph.

* Complement of a Graph:.
\rightarrow It is a simple graph G
\rightarrow having all vertices of G
\rightarrow in which there is an edge b/n two vertical $u \xi w ; i f \xi$ only if there is no edge b/n $\cup \xi W$. in G.

* Union ε_{0} Intersection of Graph:.

Union I If $G \in G^{\prime}$ are two graphs then the union of these graph are obtained by taking the union of verlex set ξ cos sets
cod d

* Intersections let $G \xi G^{\prime}$ are lao graph then the intersection of these graph are obtared by taking intersection of vertex set ξ edges set.

a

\Rightarrow

Ring sum
$G, \Delta G_{1}$

* Adjaceny Malvix of a Graphi.
let $G(V, E)$ be a simpue graph with n velfices ordered from v_{1} bv v_{n} then the adjacency maldix $A=\left[a_{i j}\right]_{n \times n_{3}}$ of G is an $n \times 0$ malrix
ex

$$
A_{a}=\begin{gathered}
v_{1} \\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{4}
\end{gathered}\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

A Fusion of Graphs:
ca: i) Given below is the adjacency matrix of graph G with 7 vertica listed $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}$ use Fusion algorithm to check the connectedne1,
(2)

$$
\begin{array}{lllllll}
v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} & v_{7}
\end{array}
$$

A_{G}.

$$
\begin{aligned}
& v_{1} \\
& v_{2} \\
& v_{3} \\
& v_{4} \\
& v_{4} \\
& v_{5} \\
& v_{6} \\
& v_{1}
\end{aligned}\left[\begin{array}{llllllll}
v_{1} & v_{2} & v_{3} & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 1 \\
1 & 0 & 0 & 0 & 2 & 0 & 0 \\
1 & 1 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Step 11. Remove all parallel edger ξ self looper

$$
A \quad G=\begin{gathered}
v_{1} \\
v_{2} \\
v_{3} \\
v_{3} \\
v_{4} \\
v_{5} \\
v_{6} \\
v_{6} \\
v_{1}
\end{gathered}\left[\begin{array}{lllllll}
v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} & v_{1} \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Skep 2:- Fosing v_{1} with V_{4}

$$
\begin{aligned}
& v_{1}=v_{1}+v_{4} \\
& v_{1} \\
& v_{1}
\end{aligned} \left\lvert\, \begin{array}{lllll}
1 & 0 & v_{3} & v_{5} & v_{6} \\
v_{1} & 2 & 0 & 0 \\
v_{2} & 0 & 0 & 0 & 1 \\
v_{3} & 0 & 0 \\
v_{3} & 0 & 0 & 0 & 1 \\
v_{5} & 2 & 1 & 0 & 0 \\
v_{6} & 0 & 0 & 0 \\
v_{1} & 0 & 0 & 1 & 0
\end{array} 0\right.
$$

Step 35 Remore paralle edqu σ sedf loops

$$
\begin{gathered}
v_{1} \\
v_{2} \\
v_{3}
\end{gathered} v_{5} v_{6} \quad v_{7} .
$$

Step ivi fusion with V_{1} with V_{5}

$$
V_{1}=V_{1}+V_{5}
$$

Slep 5' Femon paralld ξ sett- doops

Slep 6i. Fosing $V_{1} \xi V_{2}$
v_{1}

slup 7! remori paralle edqu ξ etecor sedp doop

$$
\begin{array}{llll}
v_{1} & V_{3} & v_{6} & V_{2}
\end{array}
$$

Stp 8 I Fussion V_{3} with V_{6}

$$
\begin{aligned}
& v_{1} \\
& v_{3} \\
& v_{3} \\
& v_{2}
\end{aligned}\left[\begin{array}{lll}
v_{1} & v_{3} & v_{1} \\
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Slup 9! Cemove paralle edes $\begin{gathered}\text { self doop }\end{gathered}$

$$
\begin{aligned}
& v_{1} \\
& v_{3} \\
& v_{7}
\end{aligned}\left[\begin{array}{ccc}
v_{1} & v_{3} & v_{7} \\
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Step 10: Fusion v_{3} wild v_{1}

$$
\begin{array}{ll}
v_{3}=v_{3}+v_{7} \\
v_{1} & \circlearrowleft^{v_{3}}
\end{array}
$$

$$
\begin{gathered}
V_{1} \\
V_{3}
\end{gathered}\left[\begin{array}{ll}
V_{1} & V_{3} \\
0 & 0 \\
0 & 1
\end{array}\right]
$$

Skep 11
tremor parallel

$$
v_{1}^{\bullet}
$$

$$
\dot{v}_{3} \quad\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Hence that original graph G has connected components
Isomorphism :-
\rightarrow Two graphs are said bo be.
isomarphic if they ale perhaps the same graphs just drawn differently with different names i.e they have identical behaviour for any graph-Lheorelic properly.

Properties
\rightarrow no. of vertecen are equal \rightarrow no. of edges are equal
\rightarrow Legree of each node is similar $\ln G_{1} \xi G_{2}$
\rightarrow Individual G_{1} cycle Mange $=$ G_{2} cycle denglín.
ex:
i)

(3)

-) haring same no. ofeedges, verteen E order.

Hence it issimilar
follow I somorphic.

* Mudligraph : -

Multigraph consists of vertica ξ undilected edgen hetwan thex veltices with mudtiple edqu b/n pair of veltica allowed
every simple graph is also a mudligraph

\& De Blujin Sequence:-
\& Planar Graph. It is a grath that can be drawn in the plane without any edge crossing

* Faces (or) Regions:

A planar graph can be divided into the contiguous. Region called faces

* Euler's Formula!. Let G be a connected planar simple graph. with e edger ε \checkmark vertices duet r be the no. of region

$$
r=e-v+r
$$

en

$$
\begin{aligned}
r & =6-4+2 \\
& =4
\end{aligned}
$$

\& Planarity Testing algorithm:.
\rightarrow If graph is disconnected then it has several components, take 1 at a bim, -) If graph has parallel edges of sejf loops, remove them.
\rightarrow If there i any ret tex in the graph of degree 2 , we will mere them.

After finishing check:
A single c de
(or)
a- complete graph with 4 vertices

$$
e \leq 3 n-6
$$

")

b plane graph.

A Dial Graph:
\rightarrow It has vertex for each
foo
\rightarrow Has a edge whenever two face are separated by an edge.
ca: i)

Draw Dual Graph
(I), •

ii)

\& Hamiltonian:
\rightarrow Hamiltonian: path: that is path
through a graph that goer through every vellex once ε only once

$A \rightarrow I \rightarrow H \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow F \rightarrow G$ (V).
\rightarrow Hamiltonian Circuit: If is a hamiltonian path which starts ξ slops at the same vertex.
ex!

$$
\begin{gathered}
a \rightarrow b \rightarrow(-d \rightarrow a \\
(l)
\end{gathered}
$$

\rightarrow Hamill lonian Closure of a Graph :'
The graph with vertex set $\checkmark(G)$ obtained from G by iteratively adding edges joining pairs of non adjacent vertices whose degree sum is at kern nolill no such pair remains

$$
\text { If } d(u)+d(v) \geq n
$$

$$
4+2=6
$$

$$
4+2.6
$$

$$
4+2=6
$$

* Graph Coloring:.

Given a planar or nun planar graph G, if we assign calors to its vertices in such a way that no two adjacent vertices have the same color then graph G ir propetely colored.
ex.

* Chromatic Numbers: The minimum number of colors required to color a graph G is called Chromatic Number.

$$
x(G)=2=
$$

$$
x(G)=3
$$

Wedsh Powell Adgorithm:
\rightarrow To codor a graph G, fivil. order the veltice according lo decleasing degree.

Step 11 Use First colur to color firit veltex ξ color in seauntial order i.e, each verlex which ir not adjacent lo a previously codaled vellex.

Slep 2: Repeat the process using the second color.... $3^{\text {rd }}$ coldar... orbcoler.
ex i)

$$
\begin{aligned}
\Rightarrow & (4,3,3,3,3) \\
& (e, 0, b, c, d)
\end{aligned}
$$

colar 1 to "vertex e
color 2 lo verlex a, c
colder 3 h seltex b,d

$$
x(G)=3
$$

A Chromatic Podynomial:i
let G be a graph E $F(G, x)$ be the no. of differed). colouring of a graph with x or Fever colours then $F(G, x)$ can h expressed as a polynomial in x.
\rightarrow he colon

$$
\begin{gathered}
=a_{1} \lambda+a_{2} \frac{\lambda(\lambda-1)}{2!}+a_{3} \frac{\lambda(\lambda-1)(\lambda-2)}{3!} \\
+a_{n} \frac{\lambda(\lambda-1) \cdots(\lambda-n-1)}{n!}
\end{gathered}
$$

ext i) Find the chromatic polynomial of graph

- Chromatic number

$$
\begin{aligned}
& \text { Chromatic number } \\
& \Rightarrow(4,3,3,3,3) \Leftrightarrow\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right) \\
& \Rightarrow \quad v_{1} \Rightarrow C_{1} \\
& \Rightarrow \quad v_{2} \Rightarrow C_{2} \Leftarrow V_{4} \\
& \Rightarrow \quad V_{3} \Rightarrow C_{3} \Leftarrow V_{5}
\end{aligned}
$$

Total 5 reitice
él

$$
P_{5}(\lambda)=a_{1} \lambda+a_{2} \frac{\lambda(\lambda-1)}{2!}+\frac{a_{3} \lambda(\lambda-1)}{3!}
$$

ser

$$
\begin{aligned}
& +a_{4} \frac{\lambda(\lambda-1)(\lambda-2)(\lambda-3)}{4!} \\
& +a_{5} \frac{\lambda(\lambda-1)(\lambda-2)(\lambda-3)(\lambda-4)}{5!}
\end{aligned}
$$

ii) Find the chromatie poldinomial ofa graph.

2

$$
=\lambda(\lambda-1)(\lambda-2)(\lambda-3)+\lambda(\lambda-1)(\lambda-2)
$$

,$\left.v_{s}\right) \Rightarrow \lambda(\lambda-1)(\lambda-2)[\lambda-3+1]$

$$
\Rightarrow \lambda(\lambda-1)(\lambda-2)^{2}
$$

* Tree: A tree ir a simple graph G such that there is o unique simper non-difected path bin each par of vertices of G.
(or)
A connected graph without any circuit is called Wee.

* Rooted True A root Free is a bree in which there is on designated vertex called root

Directed Wee. A rooted Hue is a directed Wee.
level:- The level of a vellex V in a rooted twa is the length of the path lo v from the roo l-

Binary bee1. A tree in which there is excactive one veltex of degree lwo (or)
a node conlawh maximum
2 chiddre-

* From augebraic expression!

$$
((2 \times x)+(3-(4 \times x))+(x-(3 \times 11))
$$

* Tree Traversal: 3 bypes
i) Preolder Traverial (P, L, R)
ii) Inolder Traversal (L, P, R)
iii) Postorder Trabersal ($L, R P$)
ex

Preordel
$12,4,5,1,6,18,14,99,19,2$
Inoidel: $4,1,6,5, \frac{12}{2}, 94,2,19,14,18$
Poltuidel $6,1,5,4,2,19,99,14,18,12$
Tree search methods:
i) BFS ξ ii) DFS
i) BFS (Breodth First search:
vet $G=(V, E)$ be a conneeted glaph of order n, with vertice $v_{1}, v_{2} \ldots v_{n}$ in same specified oider.
(Quere)
\rightarrow You cor select any vertex as starling
\rightarrow visit all x adjacent vertexa. ξ conlinse step 1 \& 2
ex

$$
\Rightarrow \quad 1,2,4,5,3,6,7
$$

ii) DFS (Depth Firit Search).
\rightarrow You con select ony veilex as startire
\rightarrow virt one x adjacend Veltax (y)
\rightarrow vist one y adiacent verlex it not fored com back to x adjacent ξ contine
ev
(1)

* Spanning bee 1. A spanning Wee is a subset of Graph G which han hall the vertices covered with minimum no. of edges.
ex For a vertices
($n-1$) edges

$\Rightarrow 6$ velficen 7 ed q but,
$\Rightarrow 6$ vertices $\Rightarrow 5$ eds
$\Rightarrow 8$ possibility
From circuit A we can lemony 1 ed er \& From circuit B we can remake ledge

$$
\Rightarrow(3 \times 3)=9
$$

$\therefore 1$ common ed er so - 1

$$
9-1=8
$$

$$
(2,3)
$$

$$
(2,4)
$$

$(2,5)$

$$
(3,4)
$$

$$
(3,5)
$$

all 8 combination sporning trees
Minimum cost Spanning Trees:.
i) Prim's Algorithm
ii) Kruskal's Alqurithm.
i) Prim's Adgorithm ::
wet $G=(V, E)$ is a connected, weighted undircted graph.

Shp 1! Choore any valex V_{1} of G_{1}
Sbep 2:- Choore an edge $e_{1}=v_{1} v_{2}$
of G such that $v_{2}=v_{1}$ \& e_{1} has smallal. weigh among the edgu or G incident with V_{1}

Slep 3: Continu slep 2 for v_{2} upto

Choose v_{1} search for leal value $V_{1} \Rightarrow V_{3}$ aga. Veal to V_{3}
$v_{1} \Rightarrow v_{3} \Rightarrow v_{2}$ ag al veal h v_{2}
$v_{1} \Rightarrow V_{3} \Rightarrow V_{2} \Rightarrow v_{4}$ agar der $1 \cdot V_{4} V_{4}$ $v_{1} \Rightarrow v_{3} \Rightarrow v_{2} \Rightarrow v_{4} \Rightarrow v_{5}$

$$
\cos t=3+2+1+2=8
$$

ii) kruskal' Algorithm:
step 1: remove all self loop. ξ parallel edges step 2: arrange all edge in the rr increasing older of col-
Step 31 Add the edge which ha dealt cost edge (If circuit are formed avoid it)

$\begin{array}{llllllllll} & B D & D^{2} T & A C & C^{2} & C^{x} & C^{x} & A^{x} B & S A & S C \\ 2 & 2 & 3 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$
(I)

$$
\Rightarrow 7+3+3+2+2
$$

\Rightarrow
17 min cost.

